一、什么是留存?
在互联网行业中,用户在某段时间内开始使用应用或访问网站,经过一段时间后,仍然继会续使用应用或会回访网站的被认作是留存。
首先,什么是留存?我们为什么要进行留存的分析?
在互联网行业当中,因为拉新或推广的活动把客户引过来,用户开始访问公司的网站,但是经过一段时间可能就会有一部分客户逐渐流失了。那些留下来的人或者是经常回访我们公司网站的人就称为留存。
现在大家经常会用到所谓的“日活”(编者注:日活跃用户量,DAU)来监测我们的网站,有的时候会看到我们的“日活”在一段时期内都是逐渐地增加的,这是一个非常好的现象。但是如果我们忽略了留存分析的话,这个结果很可能是一个错误。
比如某公司做了很多拉新、推广的活动,人是带来了很多,但是留下来或经常返回来的客户不一定增长,他们有可能是在减少,只不过是拉新过来的人太多了而掩盖了流失率居高不下的问题,实际上客户的留存是在逐渐降低的。这个时候留存分析就很重要!
我们提供了留存图和留存表两个模型来分析用户流失与留存问题。
如上图左侧的留存图所示,开始的时候是带来了百分之百的人数,随着第一天结束,留存用户就急剧下降了85%,然后慢慢地降低,直到第13天进入一个平稳的阶段。
再如上图右边留存表,这张表该怎么解读呢?
我们先看一下第二行,时间是1月11日这一天,我们通过各种各样拉新和推广吸引到了6.7K 的客户。但是一天之后就下降了85%,变成15%,两天之后再一次下降10%,到了第七天是比较稳定的状态,达到了6.5%,后面就是缓慢地下降,比较平稳。我们可以看出来客户在第一天的时候就有一个巨大的流失,然后慢慢地达到了一个比较平稳的状态。
二、留存分析的意义在哪
看完留存分析的概念,不禁思考,我们为什么要做留存呢?留存的分析意义何在?
像 SaaS 企业,获得一个客户无论在时间上还是在金钱上成本都是非常巨大的,也许要花掉两到三个月的时间才能获得一个客户。
以上面左边的图为例,刚开始这个客户,我们花了 6000 多美元的成本才把这个客户得到。得到了以后一般情况下客户对咱们这些企业可能就是按照一定的现金流给我们付钱,比如说付 500 美金,就这样一直地付下去。
这样你就会发现前期成本很高,也许我们只有通过客户使用我们的产品高达一年或者两年的时候我们才能收回成本。如果这个客户在之前就流失掉了,流失掉就意味着咱们的产品亏本了,连本都没有返回。
再来看右边的这张图,这张图讲的是每位客户成本的应收的现金流。第一个月我们得到了这个客户,我们花了 6000 刀,然后这个客户就每个月给我们付费,比如说每个月付 500 刀,他要到第 13 个月的时候我们才能达到所谓的收支平衡,从 14 个月以后才开始逐渐地赚钱,如果我们的留存没有做好,客户在用了两个月以后就走掉了,那这部分钱我们就流失了。
所以说留存有一个非常重要的意义,客户使用咱们公司的产品,时间越长越好,越长带来的现金流或者利润越高,这就是留存的一个非常核心的意义。
如果我们的留存做得好的话客户就会一直使用我们的产品,一直给我们带来财富。
从上图中我们可以看到两点:第一个就是使用的时间,留在我们产品的时间越长越好;第二个,希望利润越高越好。利润如何越高越好?就是我希望我的留存率越来越高,这样利润的面积也就越来越大。
三、提高留存曲线
如何通过留存分析提高我们的留存曲线。
以下图为例:
假如现在我们产品的留存度是上图最下面那条绿色的线,纵轴是留存的比例,横轴是时间。一天过后,我们拉新获得的100%用户只留下35%,第7天变成了20%,然后缓慢下降,到了第60天以后达到一个大约10%的效果。
这个效果我们看看能不能通过某些方面的改进,让它逐步提升呢?
假如我们让绿色的留存度的线上升到橙色的线,再上升到红色的线,那么第一天留存率高达到70%,七天留存率也有60%多,到了60天、90天的时候留存率也能高达60%左右。这就是说我们前面通过市场拉新获得的百分之百的人数在经过90天以后有60%的人留下来了。
刚开始的时候看绿色的线我们的90天的留存率是10%,如果通过我们的努力能让它达到60%,这会给我们带来源源不断的财富和现金流的收入。
四、留存的三阶段及相应策略
今天通过留存分析的一些方法来给大家一些思路,看看如何通过优化产品的方式来提高我们的留存率。
在讲这个之前我先给大家讲一下我们应该如何去看这张留存的图。
这是一个常见的留存曲线,它分成了三个部分:第一部分是振荡期,第二部分是选择期,第三部分是平稳期。
为什么我要分成这三个期呢?
首先在振荡期,我们可以看到拉新过来进入我们公司网站或者是下载APP的人数在前几天剧烈地减少,由100%几天就变成了百分之十几或者更低,这个期叫振荡期,它有自己的特色。
过了振荡期以后就是选择期,为什么我们称它为选择期呢?就是一般情况下客户在这段时间之内对我们的产品有了初步的了解,他开始探索我们公司的产品,看看这个产品有没有满足客户的一些核心需求。如果能满足,顾客很有可能就留下来了;如果没有满足,那客户就要走掉了。
过了选择期就是平稳期,留存率进入一个相对稳定的阶段。
五、留存的重要时间节点
第一个就是次日留存,就是当天过来第二天的留存有多少。我们可以看出,当天拉新,比如说我们拉了 100 个人,到了第二天可能只有十几个了,这是次日留存。
第二个是周留存,周留存是一个什么样的概念呢?我们为什么要周留存,这个概念就是说一般情况下客户使用一款产品,如果他进行一个完整的使用的话他的体验周期大约是一周或者是几天,因为比较常见的是周留存,我们就起了一个周留存的名字。
这个可以根据你的业务,如果您公司的产品体验一个完整的体验周期的话比如说是 14 天或者 3 天,我们就定 3 日留存或者 14 日留存。
客户经过这个稍微深度一点的体验,他发现这个产品满足了他的需求,可能就比较稳定的留下来,如果没有满足有可能他就离开了。
六、客户留存的核心原因
什么样的客户会留下来?
其实这个问题也非常简单,如果我们的产品能够满足客户的核心需求,他能够在我们的产品使用当中发现这个产品的价值,那么他很有可能就会留下来。
如果我们做了很多的拉新、渠道的优化等等,也许会提高一定的留存率,但是这个留存到底能不能留下来,核心的问题还是说我们的产品功能设计能否满足客户的核心需求。如果能满足的话,我们能不能再进一步,我们这个产品的设计能否比较好的、比较快的、比较方便地满足客户的核心需求,这是第二点。
七、留存分析的方法论
留存分析的方法论,来更好提升我们在平稳期这段时间的留存量。
假如我们现在可能只有 5%,我想把它提高到 10% 或者是 20% 更高,就是回到刚才这张图,从一个绿色的线,慢慢地努力提到一个红色的线。
在这里留存分析有两个常见的分析方法,给大家稍微介绍一下,然后在后面的 case(案例)的讲解当中慢慢地把这两个方法融进去,给大家讲一讲。
第一个就是获取时间,我们在留存分析的时候可以对获取客户的时间进行分组。比如说这个产品发布了版本 2.0 或者是 3.0,这个时间点我们可以做一个分组,看看用新版本的人的留存表现。
还有一种分组方式就是根据客户的行为进行分组,比如说我们举个例子,有一款音乐的软件,我想知道分享这首歌的人,他们在留存上有什么样的表现,或者对这首歌点赞数大于3次或者5次的人,他们在留存上有什么样的表现。
-
按照获取客户时间进行分析:
如上图,是一个新版本音乐 App 的留存情况,左边是留存表,右边是留存图。
先看左边的留存表,正如我刚才所说的,按照获取的时间进行了一个分组。举个例子,我们看最下面的 10 月 26 日获得的用户,一天后留存率是多少,两天后留存率是多少,三天后留存率是多少。
我们看到右边这个留存表也是这个意思,可以看出来第一天留存率骤降一半,第二天又降了10%,可以看出来前两天客户的留存率下降得很大,然后慢慢地在后期,比如说在第十五六天的时候达到一个比较平稳的阶段。
从这两张图表可以很好告诉我们随着时间的变化,留存在下降。但是如果我们想深度地挖掘哪里出了问题的话这两张表还不够,我们还需要进一步地分析问题。
这时候我们就涉及到了一个新的分析方法,就是根据客户的行为进行分析。
还是以音乐 App 为例,如果一个客户在一段时间内点击“喜欢”大于 3 次,我们看看这一部分人的留存,即上面左边的图。我们可以很明显地看到,咱们这条留存曲线是高于所有用户的蓝色留存曲线的。我们看一下次日留存率,高达 82%,而所有用户可能只有 50% 多。得出结论:点击大于三次喜欢的用户留存表现优于所有用户平均值。
这时候咱们再进行更深一步的对比,点击“喜欢”大于等于 3 次与小于 3 次的用户留存之间有什么差异?上面右边的图中,红色的线就是喜欢这首歌大于等于 3 次,蓝色的还是刚才整体的所有用户,在下面是绿色,小于 3 次的。
可以明显地看出来这三个分群有很大的不同,点击“喜欢”越多的次数留存率就会很高,而点击“喜欢”小于 3 次的人留存率比所有用户的还要低。
我们看到这两这张图就会想到一个问题,我们有没有一种方法来引导客户,让他点击喜欢呢?
这个时候留存的分析的作用就是说如何促使产品的更新和优化,既然通过数据我发现了点击“喜欢”大于 3 就会留存率高,那么我们是不是通过这种分析方法来得到一个类似的假设,我们的产品如果通过优化能让客户更早地去点击“喜欢”,那么客户的留存就会多。
当然了这个时候我们会对产品通过一些交互行为的设计、A/B test 或者各种各样的方法来使这个产品变得更好一些,更优化一些,不过这个主题比较大,我们先讲到这里。
-
按照用户行为进行分析:
我们继续往下深入地挖掘。
我现在一个行为是点击“喜欢”大于3次,我们还有些其他的行为,比如说我在一个网站上想加入一个兴趣的社区,比如说我非常喜欢听爵士乐,我就在APP进入爵士乐的社区,比如说我非常喜欢陈奕迅,我就想加入陈奕迅歌迷俱乐部,或者说我想加入其他的一些社区。
在上面左边的留存图中我们就用绿色的线表示当客户加入了一个兴趣社区时他的表现是什么样子。红色的线还有蓝色的线也是刚才说的三条线的对比。
可以看出来,如果这个客户加入了一个兴趣社区,我们也可以看到它的留存率相对整体客户来说是有一个提升的。
我们发现客户加入兴趣社区,点击大于3都会导致留存率的上升,那么我们会不会更深一步想一个问题,如果他既点击“喜欢”大于3次以上,又加入兴趣社区,会有什么样的效果?
当然这时候可能并没有很好的效果,我们并不确定,那我们就做一个实验,把数据抓出来,做上一张图,先看一下是好是坏,即刻分享。
然后我们就做出了上面右边的图,红色的就是我刚才说的,点击“喜欢”大于3次以上并且加入了社区,另外就是它的补集,就是没有小于等于3次或者是没有加入社区的,这时候我们发现这是一个很大的留存方面的差异。
由上图可以很明显地看出来红色要远远地高于蓝色,这时候就会给我们一个想法,如果咱们的产品能够更好地引导这些客户去使用这些功能,那么这些客户就能很好地留下来,留在咱们的产品上。
八、不同阶段产品模块的使用差异
下面的图叫“如何发现一个对比的点”,功能是分析不同的群组对产品不同模块使用情况。
分群 A(平稳期) 的客户之所以留下来了,是因为咱们的产品提供的功能满足了他,这些用户我们可以通过一些细节的挖掘,去看他对每一个产品每一项功能的使用情况。
比如某个产品有很多功能,我现在就截取了A/B/C/D/N 5个模块,10 代表使用这个模块的频率还有热度的指数的满分,9 表示他经常使用这个功能。反映到我们手机上的例子可能就是说他经常使用“喜欢”这个按钮或者是经常用“分享”这个按钮。
从这里可以看出来,如果我们做一个排序的话,分群A在平稳区的这部分用户非常喜欢使用模块A,也非常喜欢使用模块 C 或者模块 D。
这部分群体我们再逆推到之前,他们在前期的时候喜欢使用什么样的功能呢?他们在所谓的振荡期和选择期的时候使用什么样的功能。
我们也是通过数据的分析,把这个数据拿下来,即分群 A(振荡期+选择期),我们发现客户很可能非常喜欢模块 A 或者是功能模块 C,例如客户非常喜欢分享一个东西或者喜欢下载一个东西,这个东西就是我们行为分析的一个起止点。
我们可以探索我们是不是先用这两个点来看一看客户在留存上面有没有一个巨大的行为差异,然后我们就会通过这些东西做出一些东西,比如说我点击了“喜欢”大于3次的我就发现留存率高,点击“喜欢”小于等于3次的留存率相对就会比较低。
参考