sklearn.metrics.recall_score用法
召回率recall
sklearn.metrics.precision_score(y_true,
y_pred,
labels=None,
pos_label=1,
average='binary',
sample_weight=None,
zero_division='warn'
)
Parameters:
- y_true :1d array-like, or label indicator array / sparse matrix
- y_pred :1d array-like, or label indicator array / sparse matrix
- average : 计算类型 string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’] average参数定义了该指标的计算方法,二分类时average参数默认是binary,多分类时,可选参数有micro、macro、weighted和samples。
- sample_weight : 样本权重
参数average
选项 | 含义 |
---|---|
binary | 二分类 |
micro | 统计全局TP和FP来计算 |
macro | 计算每个标签的未加权均值(不考虑不平衡) |
weighted | 计算每个标签等等加权均值(考虑不平衡) |
samples | 计算每个实例找出其均值 |
None | 返回每类的精确度 |
Returns:
- precision:float (if average is not None) or array of float, shape = [n_unique_labels]
Examples:
>>> from sklearn.metrics import recall_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> recall_score(y_true, y_pred, average='macro')
0.33...
>>> recall_score(y_true, y_pred, average='micro')
0.33...
>>> recall_score(y_true, y_pred, average='weighted')
0.33...
>>> recall_score(y_true, y_pred, average=None)
array([1., 0., 0.])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> recall_score(y_true, y_pred, average=None)
array([0.5, 0. , 0. ])
>>> recall_score(y_true, y_pred, average=None, zero_division=1)
array([0.5, 1. , 1. ])