sklearn.metrics.roc_auc_score用法

计算AUC (Area Under Curve) 面积的类 sklearn.metrics.roc_auc_score

直接根据真实值(必须是二值)、预测值(可以是0/1,也可以是proba值)计算出auc值,中间过程的roc计算省略

sklearn.metrics.roc_auc_score ( y_true, 
                                y_score, 
                                average=’macro’, 
                                sample_weight=None, 
                                max_fpr=None
                            )
  • y_true :array, shape = [n_samples] or [n_samples, n_classes] 真实的标签
  • y_score :array, shape = [n_samples] or [n_samples, n_classes] 预测得分,可以是正类的估计概率、置信值或者分类器方法 “decision_function” 的返回值;
  • average :string, [None, ‘micro’, ‘macro’ (default), ‘samples’, ‘weighted’]
  • sample_weight : array-like of shape = [n_samples], optional
from sklearn.metrics import roc_auc_score as AUC
area = AUC(y,clf_proba.decision_function(X))
Update time: 2020-05-23

results matching ""

    No results matching ""