feature_selection.chi2用法
方差挑选完毕之后,我们就要考虑下一个问题:相关性了。我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息。如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会给模型带来噪音。
在sklearn当中,我们有三种常用的方法来评判特征与标签之间的相关性:卡方,F检验,互信息
卡方过滤是专门针对离散型标签(即分类问题)的相关性过滤。卡方检验类feature_selection.chi2
计算每个非负特征和标签之间的卡方统计量,并依照卡方统计量由高到低为特征排名。再结合feature_selection.SelectKBest
这个可以输入”评分标准“来选出前K个分数最高的特征的类,我们可以借此除去最可能独立于标签,与我们分类目的无关的特征
另外,如果卡方检验检测到某个特征中所有的值都相同,会提示我们使用方差先进行方差过滤。并且,刚才我们已经验证过,当我们使用方差过滤筛选掉一半的特征后,模型的表现时提升的。因此在这里,我们使用threshold=中位数时完成的方差过滤的数据来做卡方检验(如果方差过滤后模型的表现反而降低了,那我们就不会使用方差过滤后的数据,而是使用原数据)
sklearn.feature_selection.chi2(X, y)
Parameters
X
{array-like, sparse matrix} of shape (n_samples, n_features)*
Sample vectors.
y
array-like of shape (n_samples,)*
Target vector (class labels).
Returns
chi2
array, shape = (n_features,)*
chi2 statistics of each feature.
pval
array, shape = (n_features,)*
p-values of each feature.
卡方检验的本质是推测两组数据之间的差异,其检验的原假设是”两组数据是相互独立的”。卡方检验返回卡方值和P值两个统计量,其中卡方值很难界定有效的范围,而p值,我们一般使用0.01或0.05作为显著性水平,即p值判断的边界,具体我们可以这样来看
P值 | <=0.05或0.01 | >0.05或0.01 |
---|---|---|
数据差异 | 差异不是自然形成的 | 这些差异是很自然的样本误差 |
相关性 | 两组数据是相关的 | 两组数据是相互独立的 |
原假设 | 拒绝原假设,接受备择假设 | 接受原假设 |
Examples
首先import包和实验数据:
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.datasets import load_iris
#导入IRIS数据集
iris = load_iris()
iris.data#查看数据
array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2],
[ 4.6, 3.1, 1.5, 0.2],
[ 5. , 3.6, 1.4, 0.2],
[ 5.4, 3.9, 1.7, 0.4],
[ 4.6, 3.4, 1.4, 0.3],
使用卡方检验来选择特征
model1 = SelectKBest(chi2, k=2)
# 选择k个最佳特征
# iris.data是特征数据,iris.target是标签数据,该函数可以选择出k个特征
model1.fit_transform(iris.data, iris.target)
结果输出为:
array([[ 1.4, 0.2],
[ 1.4, 0.2],
[ 1.3, 0.2],
[ 1.5, 0.2],
[ 1.4, 0.2],
[ 1.7, 0.4],
[ 1.4, 0.3],
可以看出后使用卡方检验,选择出了后两个特征。如果我们还想查看卡方检验的p值和得分
model1.scores_ #得分
得分输出为:
array([ 10.81782088, 3.59449902, 116.16984746, 67.24482759])
可以看出后两个特征得分最高,与我们第二步的结果一致;
model1.pvalues_ #p-values
p值输出为:
array([ 4.47651499e-03, 1.65754167e-01, 5.94344354e-26, 2.50017968e-15])
可以看出后两个特征的p值最小,置信度也最高.